首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1334篇
  免费   123篇
  2023年   4篇
  2021年   34篇
  2020年   15篇
  2019年   15篇
  2018年   26篇
  2017年   25篇
  2016年   42篇
  2015年   70篇
  2014年   76篇
  2013年   90篇
  2012年   102篇
  2011年   98篇
  2010年   69篇
  2009年   59篇
  2008年   93篇
  2007年   70篇
  2006年   66篇
  2005年   56篇
  2004年   53篇
  2003年   49篇
  2002年   47篇
  2001年   23篇
  2000年   16篇
  1999年   24篇
  1998年   4篇
  1997年   5篇
  1996年   8篇
  1995年   10篇
  1994年   8篇
  1993年   7篇
  1992年   10篇
  1991年   11篇
  1990年   7篇
  1989年   11篇
  1988年   12篇
  1987年   11篇
  1986年   10篇
  1984年   6篇
  1983年   6篇
  1982年   11篇
  1981年   12篇
  1980年   12篇
  1979年   12篇
  1978年   11篇
  1977年   5篇
  1976年   6篇
  1975年   4篇
  1974年   5篇
  1972年   5篇
  1968年   5篇
排序方式: 共有1457条查询结果,搜索用时 15 毫秒
61.
62.
Viruses of the family Flaviviridae are important human and animal pathogens. Among them, the Flaviviruses dengue (DENV) and West Nile (WNV) cause regular outbreaks with fatal outcomes. The RNA-dependent RNA polymerase (RdRp) activity of the non-structural protein 5 (NS5) is a key activity for viral RNA replication. In this study, crystal structures of enzymatically active and inactive WNV RdRp domains were determined at 3.0- and 2.35-A resolution, respectively. The determined structures were shown to be mostly similar to the RdRps of the Flaviviridae members hepatitis C and bovine viral diarrhea virus, although with unique elements characteristic for the WNV RdRp. Using a reverse genetic system, residues involved in putative interactions between the RNA-cap methyltransferase (MTase) and the RdRp domain of Flavivirus NS5 were identified. This allowed us to propose a model for the structure of the full-length WNV NS5 by in silico docking of the WNV MTase domain (modeled from our previously determined structure of the DENV MTase domain) onto the RdRp domain. The Flavivirus RdRp domain structure determined here should facilitate both the design of anti-Flavivirus drugs and structure-function studies of the Flavivirus replication complex in which the multifunctional NS5 protein plays a central role.  相似文献   
63.
We purified an extracellular pyranose dehydrogenase (PDH) from the basidiomycete fungus Agaricus xanthoderma using ammonium sulfate fractionation and ion-exchange and hydrophobic interaction chromatography. The native enzyme is a monomeric glycoprotein (5% carbohydrate) containing a covalently bound FAD as its prosthetic group. The PDH polypeptide consists of 575 amino acids and has a molecular mass of 65 400 Da as determined by MALDI MS. On the basis of the primary structure of the mature protein, PDH is a member of the glucose-methanol-choline oxidoreductase family. We constructed a homology model of PDH using the 3D structure of glucose oxidase from Aspergillus niger as a template. This model suggests a novel type of bi-covalent flavinylation in PDH, 9-S-cysteinyl, 8-alpha-N3-histidyl FAD. The enzyme exhibits a broad sugar substrate tolerance, oxidizing structurally different aldopyranoses including monosaccharides and oligosaccharides as well as glycosides. Its preferred electron donor substrates are D-glucose, D-galactose, L-arabinose, and D-xylose. As shown by in situ NMR analysis, D-glucose and D-galactose are both oxidized at positions C2 and C3, yielding the corresponding didehydroaldoses (diketoaldoses) as the final reaction products. PDH shows no detectable activity with oxygen, and its reactivity towards electron acceptors is rather limited, reducing various substituted benzoquinones and complexed metal ions. The azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid) cation radical and the ferricenium ion are the best electron acceptors, as judged by the catalytic efficiencies (k(cat)/K(m)). The enzyme may play a role in lignocellulose degradation.  相似文献   
64.
Sugars and sugar degradation products readily react in vitro with guanine derivatives, resulting in the formation of DNA-bound advanced glycation end-products (DNA-AGEs). The two diastereomers of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (CEdG(A,B)) and the cyclic adduct of methylglyoxal and 2'-deoxyguanosine (mdG) (N(2)-7-bis(1-hydroxy-2-oxopropyl)-2'-deoxyguanosine have also been detected in cultured cells and/or in vivo. LC-MS/MS methods have been developed to analyze sensitively DNA adducts in vitro and in vivo. In this paper, the chemical structures of possible DNA-AGEs and the application of LC-MS/MS to measure DNA-AGEs are reviewed.  相似文献   
65.
Coastal waters are a major source of marine methane to the atmosphere. Particularly high concentrations of this potent greenhouse gas are found in anoxic waters, but it remains unclear if and to what extent anaerobic methanotrophs mitigate the methane flux. Here we investigate the long-term dynamics in methanotrophic activity and the methanotroph community in the coastal oxygen minimum zone (OMZ) of Golfo Dulce, Costa Rica, combining biogeochemical analyses, experimental incubations and 16S rRNA gene sequencing over 3 consecutive years. Our results demonstrate a stable redox zonation across the years with high concentrations of methane (up to 1.7 μmol L−1) in anoxic bottom waters. However, we also measured high activities of anaerobic methane oxidation in the OMZ core (rate constant, k, averaging 30 yr−1 in 2018 and 8 yr−1 in 2019–2020). The OPU3 and Deep Sea-1 clades of the Methylococcales were implicated as conveyors of the activity, peaking in relative abundance 5–25 m below the oxic–anoxic interface and in the deep anoxic water respectively. Although their genetic capacity for anaerobic methane oxidation remains unexplored, their sustained high relative abundance indicates an adaptation of these clades to the anoxic, methane-rich OMZ environment, allowing them to play major roles in mitigating methane fluxes.  相似文献   
66.
Dock, an adaptor protein that functions in Drosophila axonal guidance, consists of three tandem Src homology 3 (SH3) domains preceding an SH2 domain. To develop a better understanding of axonal guidance at the molecular level, we used the SH2 domain of Dock to purify a protein complex from fly S2 cells. Five proteins were obtained in pure form from this protein complex. The largest protein in the complex was identified as Dscam (Down syndrome cell adhesion molecule), which was subsequently shown to play a key role in directing neurons of the fly embryo to correct positions within the nervous system (Schmucker, D., Clemens, J. C., Shu, H., Worby, C. A., Xiao, J., Muda, M., Dixon, J. E., and Zipursky, S. L. (2000) Cell 101, 671-684). The smallest protein in this complex (p63) has now been identified. We have named p63 DSH3PX1 because it appears to be the Drosophila orthologue of the human protein known as SH3PX1. DSH3PX1 is comprised of an NH(2)-terminal SH3 domain, an internal PHOX homology (PX) domain, and a carboxyl-terminal coiled-coil region. Because of its PX domain, DSH3PX1 is considered to be a member of a growing family of proteins known collectively as sorting nexins, some of which have been shown to be involved in vesicular trafficking. We demonstrate that DSH3PX1 immunoprecipitates with Dock and Dscam from S2 cell extracts. The domains responsible for the in vitro interaction between DSH3PX1 and Dock were also identified. We further show that DSH3PX1 interacts with the Drosophila orthologue of Wasp, a protein component of actin polymerization machinery, and that DSH3PX1 co-immunoprecipitates with AP-50, the clathrin-coat adapter protein. This evidence places DSH3PX1 in a complex linking cell surface receptors like Dscam to proteins involved in cytoskeletal rearrangements and/or receptor trafficking.  相似文献   
67.
The monophyly of the group comprising the core malvalean families, Bombacaceae, Malvaceae, Sterculiaceae, and Tiliaceae, was recently confirmed by molecular studies, but the internal structure of this clade is poorly understood. In this study, we examined sequences of the chloroplast ndhF gene (aligned length 2226 bp) from 70 exemplars representing 35 of the 39 putative tribes of core Malvales. The monophyly of one traditional family, the Malvaceae, was supported in the trees resulting from these data, but the other three families, as traditionally circumscribed, are nonmonophyletic. In addition, the following relationships were well supported: (1) a clade, /Malvatheca, consisting of traditional Malvaceae and Bombacaceae (except some members of tribe Durioneae), plus Fremontodendron and Chiranthodendron, which are usually treated as Sterculiaceae; (2) a clade, /Malvadendrina, supported by a unique 21-bp (base pair) deletion and consisting of /Malvatheca, plus five additional subclades, including representatives of Sterculiaceae and Tiliaceae, and Durionieae; (3) a clade, /Byttneriina, with genera traditionally assigned to several tribes of Tiliaceae, plus exemplars of tribes Byttnerieae, Hermannieae, and Lasiopetaleae of Sterculiaceae. The most striking departures from traditional classifications are the following: Durio and relatives appear to be more closely related to Helicteres and Reevesia (Sterculiaceae) than to Bombacaceae; several genera traditionally considered as Bombacaceae (Camptostemon, Matisia, Phragmotheca, and Quararibea) or Sterculiaceae (Chiranthodendron and Fremontodendron) appear as sister lineages to the traditional Malvaceae; the traditional tribe Helictereae (Sterculiaceae) is polyphyletic; and Sterculiaceae and Tiliaceae, as traditionally circumscribed, represent polyphyletic groups that cannot sensibly be maintained with their traditional limits for purposes of classification. We discuss morphological characters and conclude that there has been extensive homoplasy in characters previously used to delineate major taxonomic groups in core Malvales. The topologies here also suggest that /Malvatheca do not have as a synapormophy monothecate anthers, as has been previously supposed but, instead, may be united by dithecate, transversely septate (polysporangiate) anthers, as found in basal members of both /Bombacoideae and /Malvoideae. Thus, “monothecate” anthers may have been derived at least twice, independently, within the /Bombacoideae (core Bombacaceae) and /Malvoideae (traditional Malvaceae).  相似文献   
68.
CD163 is a monocyte/macrophage-specific scavenger receptor that undergoes ectodomain shedding upon an inflammatory stimulus. Soluble CD163 (sCD163) actively inhibits lymphocyte proliferation, but to date exactly how it interacts with these cells has remained elusive. We screened T lymphocytes and endothelial cells for proteins binding to sCD163. In both cell types a high affinity binding protein was detected. Partial sequencing of the protein revealed sequence identity to a non-muscle myosin heavy chain type A. Employing labelled sCD163 we found little specific binding of sCD163 to the extracellular domains of T lymphocytes and human umbilical vein endothelial cells (HUVEC). In activated T lymphocytes we demonstrated specific binding of sCD163 to intracellular structures as well as the presence of the native protein within the cell after co-incubation with purified sCD163. Furthermore, we developed a novel ELISA for highly specific detection of sCD163-myosin complexes. These complexes were present in activated T lymphocytes after incubation with shed sCD163. Co-localization of sCD163 and cellular myosin in T lymphocytes was further confirmed by fluorescence microscopy. Our results suggest that sCD163 associates with cellular myosin, thereby possibly modulating the cells' response to an inflammatory stimulus.  相似文献   
69.
The X-ray structures of human aldose reductase holoenzyme in complex with the inhibitors Fidarestat (SNK-860) and Minalrestat (WAY-509) were determined at atomic resolutions of 0.92 A and 1.1 A, respectively. The hydantoin and succinimide moieties of the inhibitors interacted with the conserved anion-binding site located between the nicotinamide ring of the coenzyme and active site residues Tyr48, His110, and Trp111. Minalrestat's hydrophobic isoquinoline ring was bound in an adjacent pocket lined by residues Trp20, Phe122, and Trp219, with the bromo-fluorobenzyl group inside the "specificity" pocket. The interactions between Minalrestat's bromo-fluorobenzyl group and the enzyme include the stacking against the side-chain of Trp111 as well as hydrogen bonding distances with residues Leu300 and Thr113. The carbamoyl group in Fidarestat formed a hydrogen bond with the main-chain nitrogen atom of Leu300. The atomic resolution refinement allowed the positioning of hydrogen atoms and accurate determination of bond lengths of the inhibitors, coenzyme NADP+ and active-site residue His110. The 1'-position nitrogen atom in the hydantoin and succinimide moieties of Fidarestat and Minalrestat, respectively, form a hydrogen bond with the Nepsilon2 atom of His 110. For Fidarestat, the electron density indicated two possible positions for the H-atom in this bond. Furthermore, both native and anomalous difference maps indicated the replacement of a water molecule linked to His110 by a Cl-ion. These observations suggest a mechanism in which Fidarestat is bound protonated and becomes negatively charged by donating the proton to His110, which may have important implications on drug design.  相似文献   
70.
The metameric structure of the vertebrate trunk is generated by repeated formation of somites from the unsegmented presomitic mesoderm (PSM). We report the initial characterization of nine different mutants affecting segmentation that were isolated in a large-scale mutagenesis screen in Medaka (Oryzias latipes). Four mutants were identified that show a complete or partial absence of somites or somite boundaries. In addition, five mutations were found that cause fused somites or somites with irregular sizes and shapes. In situ hybridization analysis using specific markers involved in the segmentation clock and antero-posterior (A-P) polarity of somites revealed that the nine mutants can be compiled into two groups. In group 1, mutants exhibit defects in tailbud formation and PSM prepatterning, whereas A-P identity in the somites is defective in group 2 mutants. Three mutants (planlos, pll; schnelles ende, sne; samidare, sam) have characteristic phenotypes that are similar to those in zebrafish mutants affected in the Delta/Notch signaling pathway. The majority of mutants, however, exhibit somitic phenotypes distinct from those found in zebrafish, such as individually fused somites and irregular somite sizes. Thus, these Medaka mutants can be expected to provide clues to uncovering novel components essential for somitogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号